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Basic Concepts

• Process execution consists of a cycle of CPU execution and I/O wait 

• CPU burst and I/O burst alternate 

• CPU burst distribution varies greatly from process to process, and from 
computer to computer, but follows similar curves 

• Maximum CPU utilization obtained with multiprogramming 

• CPU scheduler selects another process when current one is in I/O burst



Alternating Sequence of CPU and I/O Bursts



Histogram of CPU-burst Distribution



CPU Scheduler

• CPU scheduler selects from among the processes in ready queue, and allocates 
the CPU to one of them 

• CPU scheduling decisions may take place when a process: 
• switches from running to waiting state (e.g., wait for I/O) 
• switches from running to ready state (e.g., when an interrupt occurs) 
• switches from waiting to ready (e.g., at completion of I/O) 
• terminates 

• Scheduling under condition1 and 4 only is nonpreemptive 
• once the CPU has been allocated to a process, the process keeps it until 

terminates or waiting for I/O 
• also called cooperative scheduling 

• Preemptive scheduling schedules process also in condition 2 and 3 
• preemptive scheduling needs hardware support such as a timer 
• synchronization primitives are necessary 



Kernel Preemption

• Preemption also affects the OS kernel design 
• kernel states will be inconsistent if preempted when updating shared data 
• i.e., kernel is serving a system call when an interrupt happens 

• Two solutions: 
• waiting either the system call to complete or I/O block  

• kernel is nonpreemptive (still a preemptive scheduling for processes!) 
• disable kernel preemption when updating shared data 

• recent Linux kernel takes this approach:  
• Linux supports SMP   
• shared data are protected by kernel synchronization 
• disable kernel preemption when in kernel synchronization 
• turned a non-preemptive SMP kernel into a preemptive kernel



Dispatcher

• Dispatcher module gives control of the CPU to the process selected by the 
short-term scheduler 

• switching context 

• switching to user mode 

• jumping to the proper location in the user program to restart that program 

• Dispatch latency : the time it takes for the dispatcher to stop one process 
and start another running



Scheduling Criteria

• CPU utilization : percentage of CPU being busy 

• Throughput: # of processes that complete execution per time unit 

• Turnaround time: the time to execute a particular process 

• from the time of submission to the time of completion 

• Waiting time: the total time spent waiting in the ready queue 

• Response time: the time it takes from when a request was submitted until the 
first response is produced 

• the time it takes to start responding



Scheduling Algorithm Optimization Criteria

• Generally, maximize CPU utilization and throughput, and minimize turnaround 
time, waiting time, and response time 

• Different systems optimize different values 

• in most cases, optimize average value  

• under some circumstances, optimizes minimum or maximum value 

• e.g., real-time systems 

• for interactive systems, minimize variance in the response time



Scheduling Algorithms

• First-come, first-served scheduling 

• Shortest-job-first scheduling 

• Priority scheduling 

• Round-robin scheduling 

• Multilevel queue scheduling 

• Multilevel feedback queue scheduling



First-Come, First-Served (FCFS) Scheduling
• Example processes: 

	 	 Process	      Burst Time	  

	 	    P1		  	  24 

	 	    P2 	 	   3 

	 	    P3	 	   	   3  

• Suppose that the processes arrive in the order: P1 , P2 , P3   

• the Gantt Chart for the FCFS schedule is:  
 
 
 

• Waiting time for P1  = 0; P2  = 24; P3 = 27, average waiting time:  (0 + 24 + 27)/3 = 17

P1! P2! P3!

24! 27! 30!0!



FCFS Scheduling

• Suppose that the processes arrive in the order: P2 , P3 , P1 

• the Gantt chart for the FCFS schedule is: 

• Waiting time for P1 = 6; P2 = 0; P3 = 3, average waiting time:   (6 + 0 + 3)/3 = 3 

• Convoy effect: all other processes waiting until the running CPU-bound 
process is done 

• considering one CPU-bound process and many I/O-bound processes 

• FCFS is non-preemptive

P1!P3!P2!

6!3! 30!0!



Shortest-Job-First Scheduling

• Associate with each process: the length of its next CPU burst 

• the process with the smallest next CPU burst is scheduled to run next 

• SJF is provably optimal: it gives minimum average waiting time for a given set 
of processes 

• moving a short process before a long one decreases the overall waiting time 

• the difficulty is to know the length of the next CPU request 

• long-term scheduler can use the user-provided processing time estimate 

• short-term scheduler needs to approximate SFJ scheduling 

• SJF can be preemptive or nonpreemptive 

• preemptive version is called shortest-remaining-time-first



Example of SJF

	 	  Process	 	 Burst Time 

	 	  	 P1	 	 	 	 6 

	 	  	 P2 	 	 	 	 8 

	 	  	 P3	 	 	 	 7 

	 	  	 P4	  	 	 	 3 

• SJF scheduling chart 

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4! P3!P1!

3! 16!0! 9!

P2!

24!



Predicting Length of Next CPU Burst

• We may not know length of next CPU burst for sure, but can predict it  

• assuming it is related to the previous CPU burst 

• Predict length of the next CPU bursts w/ exponential averaging 

•  α determines how the history will affect prediction 

• α=0 ➙  τn+1 = τn   ➙ recent history does not count 

• α=1 ➙ τn+1 = αtn  ➙ only the actual last CPU burst counts 

• older history carries less weight in the prediction 
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Prediction Length of Next CPU Burst



Shortest-Remaining-Time-First

• SJF can be preemptive: reschedule when a process arrives 

	 	             Process    Arrival Time	 Burst Time 

	 	  	 	 P1	 	 	 0	 	 	 8 

	 	 	  	 P2 	 	 	 1	 	 	 4 

	 	  	 	 P3	 	 	 2	 	 	 9 

	 	  	 	 P4	 	 	 3	 	 	 5 

• Preemptive SJF Gantt Chart 

• Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

P1! P1!P2!

1! 17!0! 10!

P3!

26!5!

P4!



Priority Scheduling

• Priority scheduling selects the ready process with highest priority 

• a priority number is associated with each process, smaller integer, higher priority 

• the CPU is allocated to the process with the highest priority  

• SJF is special case of priority scheduling 

• priority is the inverse of predicted next CPU burst time 

• Priority scheduling can be preemptive or nonpreemptive, similar to SJF 

• Starvation is a problem: low priority processes may never execute 

• Solution: aging — gradually increase priority of processes that wait for a 
long time



Example of Priority Scheduling

	          ProcessA	 Burst Time	 Priority 

	 	  	 P1	 	 	 10	 	   3 

	 	  	 P2 	 	 	 1	 	   1 

	 	  	 P3	 	 	 2	 	   4 

	 	  	 P4	 	 	 1	 	   5 

	 	 	 P5	 	 	 5	 	   2 

• Priority scheduling Gantt Chart 

• Average waiting time = 8.2 msec

P2! P3!P5!

1! 18!0! 16!

P4!

19!6!

P1!



Round Robin (RR)

• Round-robin scheduling selects process in a round-robin fashion 

• each process gets a small unit of CPU time (time quantum, q) 

• q is too large ➙ FIFO, q is too small ➙ context switch overhead is high 

• a time quantum is generally 10 to 100 milliseconds 

• process used its quantum is preempted and put to tail of the ready queue 

• a timer interrupts every quantum to schedule next process 

• Each process gets 1/n of the CPU time if there are n processes 

• no process waits more than (n-1)q time units 

• Turnaround time is not necessary decrease if we increase the quantum



Example of Round-Robin

	 Process	 Burst Time 

	 	 P1	 	 	 24 

	 	 P2	  	 	 3 

	 	 P3	 	 	 3 

• The Gantt chart is (q = 4):  
 

• Wait time for P1 is 6, P2 is 4, P3 is 7, average is 5.66

P1! P2! P3! P1! P1! P1! P1! P1!

0! 4! 7! 10! 14! 18! 22! 26! 30!



Time Quantum and Context Switch



Turnaround Time Varies With Quantum



Multilevel Queue

• Multilevel queue scheduling 
• ready queue is partitioned into separate queues 

• e.g., foreground (interactive) and background (batch) processes 
• processes are permanently assigned to a given queue  
• each queue has its own scheduling algorithm 

• e.g., interactive: RR, batch: FCFS 
• Scheduling must be done among the queues 

• fixed priority scheduling 

• possibility of starvation 
• time slice: each queue gets a certain amount of CPU time which it can 

schedule amongst its processes 
• e.g., 80% to foreground in RR, 20% to background in FCFS 



Multilevel Queue Scheduling



Multilevel Feedback Queue

• Multilevel feedback queue scheduling uses multilevel queues 

• a process can move between the various queues 

• it tries to infer the type of the processes (interactive? batch?) 
• aging can be implemented this way 

• the goal is to give interactive and I/O intensive process high priority 
• MLFQ schedulers are defined by the following parameters: 

• number of queues 
• scheduling algorithms for each queue 
• method used to determine when to assign a process a higher priority 
• method used to determine when to demote a process 
• method used to determine which queue a process will enter when it needs service 

• MLFQ is the most general CPU-scheduling algorithm



Example of Multilevel Feedback Queue
• Three queues:  

• Q0 – RR with time quantum 8 milliseconds 

• Q1 – RR time quantum 16 milliseconds 

• Q2 – FCFS 

• A new job enters queue Q0 which is served FCFS 

• when it gains CPU, the job receives 8 milliseconds 

• if it does not finish in 8 milliseconds, the job is moved to queue Q1 

• In Q1, the job is again served FCFS and receives 16 milliseconds 

• if it still does not complete, it is preempted and moved to queue Q2



Multilevel Feedback Queues



Thread Scheduling

• OS kernel schedules kernel threads 

• system-contention scope: competition among all threads in system 

• kernel does not aware user threads 

• Thread library schedule user threads onto LWPs 

• used in many-to-one and many-to-many threading model 

• process-contention scope:  scheduling competition within the process 

• PCS usually is based on priority set by the user 

• user thread scheduled to a LWP do not necessarily running on a CPU 

• OS kernel needs to schedule the kernel thread for LWP to a CPU



Pthread Scheduling

• API allows specifying either PCS or SCS during thread creation 

• pthread_attr_set/getscope is the API 

• PTHREAD_SCOPE_PROCESS: schedules threads using PCS scheduling 

• PTHREAD_SCOPE_SYSTEM: schedules threads using SCS scheduling 

• Which scope is available can be limited by OS  

• e.g., Linux and Mac OS X only allow PTHREAD_SCOPE_SYSTEM



Pthread Scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
{

int i;
pthread_t tid[NUM THREADS];
pthread_attr_t attr;
/* get the default attributes */
pthread_attr_init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
/* create the threads */
for (i = 0; i < NUM THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);
/* now join on each thread */

for (i = 0; i < NUM THREADS; i++)
pthread_join(tid[i], NULL);

}



Multiple-Processor Scheduling
• CPU scheduling more complex when multiple CPUs are available 

• assume processors are identical (homogeneous) in functionality 
• Approaches to multiple-processor scheduling 

• asymmetric multiprocessing:  
• only one processor makes scheduling decisions, I/O processing, and other activity 
• other processors act as dummy processing units 

• symmetric multiprocessing (SMP): each processor is self-scheduling	  
• scheduling data structure are shared, needs to be synchronized 
• used by common operating systems 

• Processor affinity 
• migrating process is expensive to invalidate and repopulate cache 
• solution: let a process has an affinity for the processor currently running 

• soft affinity and hard affinity



NUMA and CPU Scheduling



Multicore Processors

• Multicore processor has multiple processor cores on same chip 

• previous multi-processor systems have processors connected through bus 

• Multicore processor may complicate scheduling due to memory stall 

• memory stall: when access memory, a process spends a significant 
amount of time waiting for the data to become available  

• Solution: multithreaded CPU core 

• share the execute unit, but duplicate architecture states (e.g., 
registers) for each CPU thread 

• e.g., Intel Hyper-Threading technology 

• one thread can execute while the other in memory stall



Multithreaded Multicore System



Virtualization and Scheduling

• Virtualization may undo good scheduling efforts in the host or guests 

• Host kernel schedules multiple guests onto CPU(s) 

• in some cases, the host isn’t aware of guests, views them as processes 

• each guest does its own scheduling 

• not knowing it is running on a virtual processor 

• it can result in poor response time and performance



Linux Scheduling

• Linux kernel scheduler runs in constant time (aka. O(1) scheduler) 
• Linux scheduler is preemptive, priority based 

• two priority ranges: real-time range: 0~99, nice value: 100 ~ 140 
• real-time tasks have static priorities 
• priority for other tasks is dynamic +/-5, determined by interactivity 

• these ranges are mapped into global priority; lower values, higher priority 
• higher priority gets longer quantum 
• tasks are run-able as long as there is time left in its time slice (active) 
• if no time left (expired), it is not run-able until all other tasks use their slices 

• priority is recalculated when task expired



Priorities and Time-slice length



Linux Scheduling

• Kernel maintains a per-CPU runqueue for all the runnable tasks 

• each processor schedules itself independently 

• each runqueue has two priority arrays: active, expired 

• tasks in these two arrays are indexed by priority 

• always select the first process with the highest priority  

• when active array is empty, two arrays are exchanged



List of Runnable Tasks



End of Chapter 5


